Measuring Manufacturing: Problems of Interpretation and Biases in U.S. Statistics

Susan Houseman, *Upjohn Institute*
Timothy Bartik, *Upjohn Institute*
Timothy Sturgeon, *MIT*

Presentation prepared for the conference on Measuring the Effects of Globalization, February 28-March 1, 2013, Washington, DC
Motivation: Debate over future role of manufacturing in United States

- Sector lost 5.3 million mfg jobs—31% of employment since 2000
 - Losses widespread—across mfg industries and states (not just confined to “rust belt”)
- Response to job losses, trade deficits, concerns that US losing competitiveness in manufacturing:
 - Obama Administration established cabinet-level mfg policy office
 - Congress currently debating measures to help U.S. manufacturers
- But policies controversial—many argue unnecessary
 - U.S. mfg healthy—robust output & productivity growth
- Official statistics play key role in shaping our understanding of economy & informing policy. Current debate over mfg illustrates challenges globalization poses to statistical agencies:
 - Accurately constructing economic statistics
 - Communicating meaning to data users
Output and productivity growth statistics depict health U.S. manufacturing sector

- Mfg GDP & productivity growth widely cited to argue:
 - US mfg sector healthy
 - Automation responsible for recent job losses

- But these statistics
 - Widely misinterpreted
 - Subject to significant bias

Sources: BEA and BLS
Overview

- **Build on Houseman, Kurz, Lengermann & Mandel (2011), which showed:**
 - Computer & electronic products industry driving real value added and MFP growth in mfg
 - Measured output & productivity growth in mfg subject to biases owing to shift toward low-cost imported intermediates (offshoring bias)
- **Extend empirical analyses to state mfg data, 1997-2007**
 - Show sensitivity of absolute and relative performance of state mfg sectors to inclusion of computer industry, offshoring bias
 - Test predictions of effect of output growth on employment growth, using different output measures
- **Consider other issues related to globalization & computer industry**
- **Implications for statistical agencies**
Aggregate manufacturing statistics mask divergent trends in sector

Extraordinary growth in computer & electronic products industry:
• Largely credited to prices for certain computer & semiconductor products that when adjusted for quality improvements fall rapidly
• Does not reflect rapid growth in units shipped.
• Computer industry accounts for only 10-13% value added throughout period, but has outsized effect on aggregate mfg. statistics.
• Rapid growth real value added + decline employment (40% since 2000) resulted in rapid labor productivity growth.
• Labor productivity growth 40-50% less w/o computers.
Interpretation of Output and Productivity Growth in the Computer Industry

- **Labor productivity growth widely misinterpreted:**
 - Typically assumed that reflects automation—the substitution of capital for labor.
 - In computer industry, largely reflects R&D innovations that result in product quality improvements:
 - Not caused large-scale job losses in computer industry.
 - All losses in computer industry attributable to imports (McKinsey Global Institute 2012).

- **Real value-added growth in computer industry not a good indicator of competitiveness of U.S. as production location**
 - Trade deficit in these products relative to domestic consumption growing—U.S. production of computers & related electronics not kept pace w/demand.
 - No high volume products produced in U.S. anymore (Sturgeon & Kawakami 2010).
“Offshoring Bias”: Nature of Problem

- Methodologies for price index construction generally assume that “law of one price” holds:
 - Price differences across suppliers for comparable products assumed to reflect quality differences.
 - BUT, entry & expansion of low-cost suppliers (domestic or foreign) important part of price dynamics
- Shift by consumers & businesses from high to low-cost suppliers imparts upward bias to price indexes:
 - Termed “outlet substitution bias” in CPI
- Given growth of low-cost imported intermediates from emerging economies, bias to input price index (“offshoring” bias) may be significant in some industries. Implies:
 - Growth real imports understated
 - Domestic real VA growth overstated
 - Some productivity measures overstated
Overview of Bias to Input Price Index from Offshoring

PPI measures change in domestic product

\[P_{\text{domestic}, t} \rightarrow P_{\text{domestic}, t+1} \]

IPP measures change in import product price

\[P_{\text{import}, t} \rightarrow P_{\text{import}, t+1} \]

Input price index: constructed from PPI & IPP

Bias to input price index proportional to size of “discount” & gain in market share by low-cost supplier (Diewert & Nakamura 2009)
Size of Bias from Offshoring in Manufacturing

- HKLM (2011) estimated bias to mfg real value-added growth & MFP from growth imported materials inputs, 1997-2007
 - Adjust for bias to input price index (Diewert & Nakamura 2009)
 - Captures bias from substitution from domestic to foreign & substitution among countries
 - Inklaar (2013), Howells et al. (2013) focus on bias to import price index from substitution among countries

- Bias to average annual growth in real value added in mfg:
 - 0.2 to 0.5 percentage point per year – depending on assumptions about size of discount
 - Magnitude of bias largest in computer industry: 0.5 to 1.4 percentage point per year (4 - 7% of growth)
 - Represents 21 to 49 percent of growth in manufacturing, excluding computers

- Bias to annual growth rate of MFP ≈ 0.1 percentage point
Analyses with State-level Data

- Attracting, retaining, growing manufacturing core of state & local economic development.
- Compute state-level mfg real value-added growth, 1997-2007
 - Omitting NAICS 334
 - Adjusting for offshoring bias, using selected estimates from HKLM (2011)
- Our estimates likely understate cross-state variation in offshoring bias:
 - Import comparability assumption understates industry variation in imported intermediates. State variation comes from differences in industry structure.
 - Assume no within-industry variation among states in use of imported intermediates.
Computer & Electronics Products Industry has Large Effect on State Mfg Growth and Rankings

- Mfg real VA and employment growth in most states follow national patterns over 1997-07 period:
 - Mfg real VA grew by at least 20% in 33 states—declined in 4
 - Mfg employment declined by at least 10% in 37 states + DC
- Over 1997-07 period, when computer industry omitted, mfg real VA growth rates
 - Fall by > 50% in 28 states and DC
 - Fall by > 25% in all but 10 states
- State rankings based on mfg real VA growth largely capture size of computer industry in state:
 - Substantially change when computer industry omitted
 - May affect performance US mfg in international rankings.
Offshoring Bias – Potential Significant Additional Effect on State Manufacturing Growth

- 0.1 to 0.7 percentage point/year, depending on state industry mix and assumption about discount
- Adjustments largest in Michigan, Kentucky, Indiana, and Ohio
- Caveat: import proportionality assumption likely results in understatement of cross-state variation in bias
Testing the Effect of State Mfg Real VA Growth on Employment Growth

- Demand shocks to state manufacturing should be strongly associated with state employment growth.
- BUT, expect that computer industry will weaken relationship:
 - Drives mfg real VA growth in many states
 - Largely measures product quality improvements—which has no implications per se for employment growth.
- Regress state’s employment growth on real GDP mfg growth, 1997-2007
 - OLS estimates have no structural interpretation: state mfg output growth reflects state-level demand, supply, & productivity shocks
 - To capture demand shocks, instrument state mfg growth with weighted avg of natl ind growth rates. (“Bartik” instrument)
 - Use 3 measures of state mfg GDP growth
The Effect of Manufacturing Output Growth on Employment Growth, 1997-2007

<table>
<thead>
<tr>
<th></th>
<th>2SLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth mfg real value added</td>
<td>0.06</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>constant</td>
<td>-21.91</td>
<td>-22.15</td>
</tr>
<tr>
<td></td>
<td>(4.47)</td>
<td>(3.51)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2SLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth mfg real value added w/o computers</td>
<td>1.07</td>
<td>0.69**</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>constant</td>
<td>-33.35</td>
<td>-27.90</td>
</tr>
<tr>
<td></td>
<td>(10.31)</td>
<td>(5.06)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2SLS</th>
<th>2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth mfg real value added w/o computers, adj. offshoring bias</td>
<td>0.99</td>
<td>0.70**</td>
</tr>
<tr>
<td></td>
<td>(0.62)</td>
<td>(0.30)</td>
</tr>
<tr>
<td>constant</td>
<td>-28.84</td>
<td>-25.50</td>
</tr>
<tr>
<td></td>
<td>(6.62)</td>
<td>(3.53)</td>
</tr>
</tbody>
</table>

N | 51 | 48 |

- Disconnect between real output & employment growth in official data—elasticity estimates near 0
- Emp-output elasticity near 1 when growth measure omits computers.
- Growth measure that also adjusts for offshoring bias improves precision of estimates (s.e. lower)
- Demonstrates why aggregate mfg data, per se, don’t show automation caused employment losses
Computer & electronics products industry: Are the numbers right?

- Outsized effect computer & electronics products industry has on manufacturing statistics naturally raises the question: Are the numbers right?
- Large impact this industry has on manufacturing (and aggregate GDP) may warrant greater scrutiny of numbers. We raise 3 broad questions:
 - Is the input-output structure in NAICS 334 right?
 - Are the price deflators right?
 - Should adjustments for quality improvements in products be (solely) attributed to the hardware produced in manufacturing?
I-O Structure in Computer Industry

- **Puzzle:** BLS sectoral output growth in NAICS 334 much lower than real value added growth: 7% v. 22% 1997-2007.
 - Implies real inputs rising much less quickly than real outputs.
 - Possibly correct, but could reflect errors in measuring outputs & inputs in this critical industry

- **Measuring I-O structure difficult with growth of globalization:**
 - Rapid shifts in structure of production and location
 - Benchmark I-O data out-of-date
 - Are some fabless semiconductors misclassified (under current system) in manufacturing? (Bayard, Byrne, and Smith 2013)
 - Is input structure correct for production remaining in U.S. given substantial shift in products produced, hollowing out?
Do Quality-Adjusted Price Deflators in Computer Industry Capture True Gains to Consumers?

- Manufacturing and aggregate GDP highly sensitive to price deflators of small number of products in this industry.
- Current methodology may overstate true value to consumers & businesses from product improvements in the presence of network effects (Ellinson & Funderberg 2000, Linz 2006)
 - Consumers & businesses use computers & related hardware to interact with each other and the Internet
 - Preferences heterogeneous
 - New models depreciate/render obsolete old models
 - Negative externalities not taken into account by existing methodologies (hedonic or matched models) for constructing price deflators
Where Should Benefits from Technical Advances in Computer & Electronic Products be Attributed?

- To physical hardware in manufacturing? To other embedded products such as software & communications services?
- Old question has new relevance w/ growth of globalization:
 - U.S. moving away from making things toward specializing in services & product design (Corrado & Hulten 2010)
 - Continued offshoring of production may have major impact on measured growth in mfg, aggregate GDP. Is true effect on economy commensurate w/ effect on statistics?
- One response: reclassify “factoryless goods manufacturing” in manufacturing sector—but problems of interpretation
- Measuring international flows of intangible assets—including R&D services—will be explored in last conference session
Implications for Statistical Agencies

- **Transparency and communication with data users**
 - Effect of computers—or any other industry with outsized effect—on aggregate statistics should be transparent.
 - Transparency important with move toward inclusion of factoryless goods producers in manufacturing sector

- **Prices data: collection and index construction:**
 - Entry & expansion of low-cost (domestic & foreign) suppliers important part of price dynamics not generally captured in price indexes
 - Collection of buyers’ prices desirable, if feasible
 - Should capture price changes from all types of shifts in sourcing
 - Proposed input price index would begin to address problem in price indexes
Implications for Statistical Agencies

- Large effect of computer industry on mfg & aggregate statistics means important to address other sources of measurement error /conceptual issues in this industry:
 - I-O structure in rapidly changing global supply
 - Methodology used to adjust prices for quality improvements
 - Consistent adjustment of import/export/domestic prices for quality improvements
 - Where consumer benefits from technical advances are counted: manufacturing v. services?